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Abstract

A classification of spatial simulation models of fire and vegetation dynamics (landscape fire succession models or LFSMs) is
presented. The classification was developed to provide a foundation for comparing models and to help identify the appropriate fire
and vegetation processes and their simulation to include in coarse scale dynamic global vegetation models. Other uses include a
decision tool for research and management applications and a vehicle to interpret differences between LFSMs. The classification
is based on the four primary processes that influence fire and vegetation dynamics: fire ignition, fire spread, fire effects, and
vegetation succession. Forty-four LFSMs that explicitly simulated the four processes were rated by the authors and the modelers
on a scale from 0 to 10 for their inherent degree of stochasticity, complexity, and mechanism for each of the four processes. These
ratings were then used to group LFSMs into similar classes using common ordination and clustering techniques. Another database
was created to describe each LFSM using selected keywords for over 20 explanatory categories. This database and the ordination
and clustering results were then used to create the final LFSM classification that contains 12 classes and a corresponding key.
The database and analysis results were used to construct a second classification key so managers can pick the most appropriate
model for their application based on computer resources, available modeling expertise, and management objective.
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1. Introduction

One of the most difficult challenges in predict-
ing large-scale ecological change is the inclusion
of non-equilibrium dynamics, disturbance regimes,
extreme events, and spatial relationships into eco-
logical simulation models (Solomon, 1986; Dale
and Rauscher, 1994; Gardner et al., 1996; Fosberg
et al., 1999). Theoretical community models and
patch-scale vegetation models have become increas-
ingly successful at dealing with this, but many models
of climatic effects on vegetation change have inherent
limitations that may reduce their utility for exploring
disturbance–climate–vegetation interactions. Some
treat vegetation composition and structure as a con-
stant and only simulate climatic effects on biogeo-
chemistry and ecophysiology (Running and Nemani,
1991; Neilson and Running, 1996; Waring and
Running, 1998). Others have assumed that vegetation
would change instantaneously in response to chang-
ing climate (equilibrium biogeographic models, e.g.,
Prentice et al., 1993). In addition, some models have
assumed that natural and human-caused disturbance
regimes are only a minor driver of vegetation change
(seeDale and Rauscher, 1994). The inclusion of dis-
turbance and other extreme events in coarse scale
dynamic models is still in its infancy (Lenihan et al.,
1998; Thonicke et al., 2001), and only a few models
have explicitly incorporated spatial relationships into
ecological processes (seeBotkin and Schenk, 1996;
Keane and Finney, 2003). It is now recognized that,
to function as a comprehensive exploratory tool, veg-
etation models should simulate transient changes in
vegetation in response to climate, disturbance and en-
vironmental change in a spatial domain (Foley et al.,
1998; Gardner et al., 1996; Hurtt et al., 1998).

Wildland fire, in particular, is a disturbance that
is sensitive to vegetation composition and structure,
climatic conditions, and other spatially-dependent
variables (Clark, 1993; Swetnam and Baisan, 1996;
Swetnam, 1997). In addition, the fire regime has a
major effect on the rate of vegetation change, the
successional sequence of community types following
fires, and the carbon budget (Lenihan et al., 1998;
Ryan, 1991, Starfield and Chapin, 1996). Modifica-
tion of the fire regime due to climate warming (e.g.,
Cary and Banks, 1999) may overwhelm other ecosys-
tem responses to climate change, including species

migration, substitution, and extinction (Weber and
Flannigan, 1997), or altered ecosystem processes
(Ryan, 1991; Keane et al., 1995). Because succes-
sional changes of vegetation are dependent on the
pattern, severity, and timing (e.g., season) of fire
(Agee, 1993; DeBano et al., 1998), large nonlinear
changes in vegetation are likely to occur in response
to climatic and land use change (Flannigan and Van
Wagner, 1991; Crutzen and Goldammer, 1993).

One of the most effective tools for studying the
relationships between fire, climate, and vegetation
is simulation modeling. Although empirical stud-
ies are immensely valuable, they are expensive and
time-consuming, making them of limited use for char-
acterizing ecosystem change over the large areas and
long time spans needed for exploring climate change.
The success of simulation models for studying these
effects has been evident by the large number of models
and model types that have been produced (seeBaker,
1989; Mladenoff and Baker, 1999; Keane and Finney,
2003, for a general overview). A special class of these
models, termed landscape fire succession models
(LFSMs) in this paper, have been applied to a spec-
trum of problems based on a variety of conceptual
approaches and a wide range of solution techniques.
LFSMs are spatial models that simulate the dynamic
interaction of fire, vegetation, and often climate. The
diversity of these models has created its own problems,
including the difficulty of comparing results among
different ecosystem types and disturbance regimes,
and the selection of the most appropriate model to use
in a new geographical area or landscape setting. The
diversity of model types and applications also makes
it difficult to decide which landscape and ecosystem
processes, and the level of detail used to represent
them, are most critical for understanding fire effects.

We found more than 40 fire-vegetation coupled
models that cover a wide range of ecosystems, geo-
graphic areas, and spatial scales. We believe a critical
comparison of features in these LFSMs will lead
to a better understanding of fire–climate–vegetation
linkages and support the development of new model
hybrids by identifying the importance of simula-
tion components that are common across models.
The comparison would also provide important in-
sight into the tradeoffs inherent in implementing
unique approaches into an optimal modeling design
for coarse-scale applications, such as dynamic global
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vegetation models (DGVMs) (Lenihan et al., 1998).
This comparison is possible only if the models are
evaluated in a consistent and standardized context that
emphasizes the relative differences between modeling
approaches and design rather than the accuracy of
their predictions (Barrett, 2001). To accomplish this, a
Landscape Fire Working Group was formed under the
aegis of the Global Change and Terrestrial Ecosys-
tems Project (GCTE—Task 2.2.2; GCTE is a Core
Project of the International Geosphere-Biosphere Pro-
gramme, IGBP). The objective of this working group
is to use the current, well-developed understanding
of fire behavior, fire ecology, and weather to evaluate
a set of dynamic fire–climate–vegetation models that
simulate fire effects at multiple temporal and spatial
scales relevant to vegetation and climate change. The
first step toward this end was to develop a model
classification that would guide future comparison
analyses and model development efforts. Instead of
comparing all LFSMs, the GCTE working group
compared representative models from categories in
the classification. This classification is the subject of
this paper. The companion LFSM comparison effort
evaluates behavior of five selected LFSMs on neutral
landscapes in a simulation experiment where terrain,
fuel pattern, and climate are treated as factors (Cary
et al., in press). The comparison study will identify the
optimal level of detail to simulate fire, vegetation, and
climate dynamics at various time and space scales.

Presented here is a classification of 44 LFSMs based
on the inherent complexity, mechanism, and stochas-
ticity in their simulation design (seeTable 1). This
classification can be used for many purposes. It pro-
vides the foundation for coordinated LFSM compar-
isons such as the companion study mentioned above
(Cary et al., in press). The classification also provides
the context for an evaluation of models and model
components for various objectives and it allows man-
agers and researchers to select, compare, and interpret
LFSMs in a standardized context. The inclusion of fire
in broad-scale vegetation modeling for investigating
climate change is specifically addressed in this paper.

2. Background

We define LFSMs as models that simulate the
linked processes of fire and succession in a spatial

domain. Although the complexity of spatial relation-
ships of vegetation and fire dynamics may vary from
model to model, all LFSMs, by definition, produce
time-dependent, georeferenced results in the form of
digital maps or GIS layers. Additional processes can
be incorporated into the LFSM simulation, such as
timber harvesting and biogeochemical modeling (ex-
plicit simulation of the flow of energy, carbon, water,
and other elements within an ecosystem or landscape),
but one of the minimum requirements for a LFSM
is the explicit linkage between fire and succession.
Climatic processes need not be explicitly incorpo-
rated into the LFSM, but, because of our interests in
climate change, special attention was given to those
models that consider the direct effect of weather on
fire occurrence and vegetation change.

Several existing LFSMs provide examples of the
diverse and complex approaches used to simulate
landscape, climate, and fire dynamics (seeTable 1).
Baker (1989)examined several models of landscape
change and groups them into whole, distributional,
and spatial landscape models depending on the level
of aggregation of simulated entities. Details and gen-
eral comparisons of other landscape models are pre-
sented inMcCarthy and Gill (1997), Mladenoff and
Baker (1999), Barrett (2001), andMcCarthy and Cary
(2002). However, to fully understand LFSMs, it is
helpful to review some general approaches used in the
individual models. At the complex end of the model
spectrum, Fire-BGC integrates the FOREST-BGC
biogeochemical model (Running and Coughlan, 1988;
Running and Gower, 1991)with the FIRESUM gap
model, an individual tree model, (Keane et al., 1989)
to simulate climate–fire–vegetation dynamics (Keane
et al., 1996b). The LANDIS model was used to eval-
uate fire, windthrow, and harvest disturbance regimes
on landscape pattern and structure (Mladenoff et al.,
1996; He and Mladenoff, 1999; Mladenoff and He,
1999). Fire is indirectly simulated at the stand-level by
quantifying fire effects based on age class structure,
and succession is simulated as a competitive process
driven by species life history parameters.Roberts and
Betz (1999)used life history parameters or vital at-
tributes (Noble and Slatyer, 1977) to drive succession
in their model LANDSIM that simulates fire effects
at the polygon or stand level without a fire spread
model. The DISPATCH model ofBaker (1992, 1993,
1999) stochastically simulates fire occurrence and
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Table 1
List of LFSMs included in this study with a general description of its application

Model name Reference(s) Ecosystem Geographic area Scale

ALFRESCO Rupp et al. (2000) Spruce-fir Alaska, USA Coarse
ANTON∗ Antonovski et al. (1992) Boreal Forest Siberia Fine
BANKSIA∗ Groeneveld et al. (2002) Banksiashrublands Western Fine
BFOLDS Perera et al. (2002) Mixed boreal Ontario, CA Mid
Biome-BGC Thornton (1998), Thornton et al. (2002) Any Global Coarse
CAFÉ Bradstock et al. (1998) Eucalypts Southern Australia Fine
CENTURY∗ Peng and Apps (1999) Boreal Forest Alberta, CA Coarse
DISPATCH Baker et al. (1991), Baker (1995, 1999) Spruce-fir Central Rockies, USA Fine
DRYADES Mailly et al. (2000) Conifer Forest Northwestern USA Fine
EMBYR Gardner et al. (1996), Hargrove et al. (2000) Lodgepole pine forests Central Rockies USA Fine
FETM CH2MHill (1998), Schaaf and Carlton (1998) Conifer Forests Western USA Fine
FIN-LANDIS Pennanen and Kuuluvainen (2002) Boreal Forests Fenno-scandinavia Fine
FIRE-BGC Keane et al. (1996) Conifer Forests Northern Rockies USA Fine
FIREPAT Keane and Long (1997) Any Western USA Coarse
FIRESCAPE Cary (1997, 1998) Eucalypts Forest Southeastern Australia Fine
FLAP-X Boychuk and Perera (1997),

Boychuk et al. (1997)
Boreal Forests Canada Fine

FVS-FFE Reinhardt and Crookston (in press) Conifer Forests Western USA Fine
GLOB-FIR Thonicke et al. (2001) Any Global Coarse
INTELAND Gauthier et al. (1994) Boreal Forests Canada Fine
LADS Wimberly et al. (2000), Wimberly (2002) Coastal Forests Pacific Northwest USA Mid
LAMOS Lavorel et al. (2000) Any Australia Fine
LANDIS Mladenoff et al. (1996), He and

Mladenoff (1999)
Broadleaf and Conifer Mid-western USA Fine-Mid

LANDSIM Roberts and Betz (1999) Conifer Forests Southwestern USA Fine
LANDSUM Keane et al. (1997), Keane et al. (2002) Any Northern Rockies USA Fine
MAQUIS∗ Perry and Enright (2002) Maquis Forests New Caledonia Fine
MC-FIRE Lenihan et al. (1998) Many Global Coarse
MOSAIC Green (1989) Forests Australia Fine
ON-FIRE Li (1997) Boreal Forests Canada Fine
QLAND Pennanen et al. (2001) Boreal Forests Quebec, Canada Fine
QTIP∗ Plant et al. (1999) Hardwood and Rangelands Sierra Nevada, USA Fine
RATZ∗ Ratz (1995) Any Alberta, Canada Fine
REFIRES Burrows (1988) Any Western USA Fine
REG-FIRM Venevsky et al. (in press) Any Iberia, Europe Mid
RMLANDS McGarigal et al. (2003) Lodgepole Forests Central Rockies USA Fine
SAFE-FORESTS Sessions et al. (1997, 1999) Mixed Conifer Sierra Nevada, USA Fine
SELES Fall and Fall (1996) Any Canada Fine
SEM-LAND Li (2000, 2001) Spruce-fir Forests Canada Fine
SIERRA Mouillot et al. (2001, 2002) Mediterranean Forests Southern Europe Fine
SIMPPLLE Chew (1997), Chew et al. (in press) Any Northern Rockies, USA Fine
SUFF1∗ Suffling (1995) Boreal Forests Ontario, Canada Fine
SUFF2∗ Suffling (1993) Subalpine Forests Alberta, Canada Fine
TELSA Klenner et al. (2000), Kurz et al. (2000) Any Western Canada and USA Fine
VASL Noble and Gitay (1996) Forests and Shrublands Southern Australia Fine
ZELIG-B∗ Cumming et al. (1994), Cumming

et al. (1995)
Mixed Boreal Forests Alberta, Canada Fine

ZELIG-L∗ Miller (1994), Miller and Urban (1999) Mixed Conifer Forests Sierra Nevada, USA Fine

Models without published names were given labels specifically for this study (identified by the asterisk).
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spread based on dynamically simulated weather, fuel
loadings and topographic setting, with subsequent
forest succession simulated as a change in cover type
and stand age.Miller and Urban (1999)implemented
a spatial application of fire in the Zelig gap model
to assess the interaction of fire, climate, and pattern
in Sierra Nevada forests. More simplistic approaches
include the SIMPPLLE model (Chew, 1997; Chew
et al., in press) that uses a multiple pathway approach
(linked sequences or pathways of succession com-
munity types) to simulate succession on landscape
polygons and a stochastic approach to simulate fire
occurrence. This same theme can be found in models
by Schaaf and Carlton (1998), Kurz et al. (2000), and
Keane et al. (2002).

A series of six GCTE sponsored workshops at-
tended by a wide variety of international ecological
modelers and ecologists was held from 1999 to 2003
to synthesize current landscape fire modeling into an
organized framework (seeHawkes and Flannigan,
2000, www.nceas.org). One product of these work-
shops was an objective, quantitative protocol for com-
paring LFSM simulations for a series of landscapes
and climates to determine the relative sensitivity of
predictions to model structure and complexity (Cary
et al., in press). A standardized set of model descrip-
tive elements (MDE) was also developed to quali-
tatively contrast and compare LFSMs (Rupp et al.,
2001). Information included in the MDE data base
included initial purpose of the model, the ecosystem
type being simulated, nature of the vegetation being
represented and the method of succession, climate
variables and drivers, the temporal and spatial scales
of predictions, and computing constraints (seeTable 2
for all MDEs).

Using the MDE information, we identified four es-
sential components in LFSMs that represent the pri-
mary processes governing the simulation of landscape
succession and fire: (1) vegetation succession, (2) fire
ignition, (3) fire spread, and (4) fire effects. All LFSMs
must contain all of these components. We assumed
any other ecosystem and landscape process simulated
by an LFSM, such as harvesting and insect epidemics,
could be added as another component or incorporated
into one or more of these four primary components.
For example, fuel accumulation would be considered
part of the vegetation succession component. We de-
bated whether fire extinguishment (i.e., when a spread-

ing fire actually goes out) was another component, but
decided it should be part of the spread component (i.e.,
extinguishment is the lack of spread) for simplicity.

Each LFSM component can be described by the
approach, scale, and strategy (Reinhardt et al., 2001;
Keane and Finney, 2003; Keane et al., 2004). The
approach defines the general design of the model as
probabilistic (based on stochastic processes), empir-
ical (based on relationships described by data), or
physical (based on fundamental physical processes).
Spatial scales are either regional (1000’s of km2),
landscape (10’s of km2), forest stand (<1 ha), or at
the level of the individual plant (∼m2). The strategy
describes the algorithms, tools, or techniques used
to represent a simulation component. Many LFSM
components were developed by merging two or more
approaches, scales, and strategies. The following
discussion of components by strategy provides the
background for interpreting the LFSM classification.

2.1. The succession component

The succession component simulates the response
of vegetation or ecosystem to various environmen-
tal stimuli that either implicitly or explicitly include
climate, available water and nutrients, and grow-
ing space. Plants respond to both biotic and abiotic
changes as the result of fire (DeBano et al., 1998).
Succession is an important component of LFSMs for
several reasons. First, the structural and functional
development of vegetation over time determines im-
portant fuel characteristics including biomass, bulk
density, size distribution, chemistry, and continuity.
Second, vegetation development affects both micro-
climate and soil physical properties, which in turn
influence live and dead fuel moisture dynamics and
subsequent fire behavior. The response of vegetation
to the postfire environmental gradient determines fu-
ture successional pathways, which may or may not be
different from successional dynamics of the previous
fire interval.

We found a wide diversity in strategies for model-
ing succession. In some LFSMs, succession was rep-
resented as the changes in loadings of the fine fuels
(Cary, 1997) or simply as an age since last distur-
bance (Li et al., 1997), while other LFSMs simulated
individual plants, diameter or age cohorts (Coffin and
Lauenroth, 1990; Miller, 1994; Mladenoff et al., 1996;

http://www.nceas.org
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Table 2
Items contained in the Model ID card for describing rather than classifying landscape fire succession models

Component Categories Keywords

General Scale Fine-landscapes with<50 m pixel
Mid-large areas with<500 m pixel
Coarse-regions with >500 m pixel

Application Management, development, research
Timestep Day, week, month, year, decade
Climate, weather None-no climate included

Daily, weekly, monthly, yearly
Parameterization Easy, moderate, difficult
Initialization Easy, moderate, difficult
Parent model Name of original model
Portability Low, moderate, high
Adaptability Low, moderate, high

Succession Vegetation representation Biomes, successional stage, age, carbon pools, cover type, plant
functional types, diameter cohorts, fuels, species, individual plants

Simulation scale Plants, stand, pixel, polygon, region
Seed dispersal None, simple, complex, spatial
Succession driver Age, climate, site
Strategy Pathway, increment, transition, ecosystem, gap, vital attributes, growth and yield
Approach Probabilistic, empirical, physical

Fire ignition Driver Biome, weather, age, years since last fire, topography, wind, succession
stage, cover type, fuel, random

Strategy Probability functions, rule-based, mechanistic
Approach Random, probabilistic, empirical, physical

Fire spread Driver None, fuel, weather, topography, wind, succession stage, cover type,
Strategy Vector, shape, lattice
Approach Probabilistic, empirical, physical

Fire effects Driver None, fire presence, fire behavior, fire severity
Strategy Rule-based, empirical, physical
Approach Probabilistic, empirical, physical

These keywords represent criteria in the model key for managers inTable 3. All data are posted onwww.frames.govfor reference.

Perry and Enright, 2002). We identified four broad
strategies used to simulate succession where all ap-
proaches are implemented at all scales: (1) frame, (2)
ecosystem process, (3) plant functional type, and (4)
individual plant. Although these strategies are tied to
scale in terms of their level of detail, they do not rep-
resent a specific spatial resolution or approach. In fact,
an individual strategy can be implemented at several
spatial scales, and different approaches can be imple-
mented at the same scales.

Many land management LFSMs are commonly
built using the frame strategy because they are easy to
develop, initialize and parameterize. Frame models,
also called state-and-transition models or pathway
models, represent succession at the stand level by link-
ing vegetation community types, sometimes named

for cover types and structural stages, along pathways
of development ultimately ending in a climax or stable
community type (see example inFig. 1). Each stage
in the pathway represents a frame. Frame models
can be developed using an empirical approach where
the transition from one state to another is determin-
istic (Chew, 1997) or using a probabilistic approach
where transitions are stochastic, such as Markov pro-
cess (Acevedo, 1981). The timing and direction of
the transitions are often quantified from extensive
field and simulation data. Examples of a single path-
way frame-based deterministic model are EMBYR
(Gardner et al., 1996, Hargrove et al., 2000) and LADS
(Wimberly et al., 2000), and examples of a multiple
pathway deterministic models are LANDSUM (Keane
et al., 2002) and SIMPPLLE (Chew et al., in press).

http://www.frames.gov
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Fig. 1. An example of a frame based approach using pathway modeling for simulating the succession component in a LFSM. Species
cover types are WP for whitebark pine, SH for shrub-herb, and SF for subalpine fir. Structural stages are SGF-shrub/grass/forb, SIN-stand
initiation, SEC-stem exclusion closed, SEO-stem exclusion open, URI-understory reinitiation, OFM-old forest multistrata, OFS-old forest
single strata. Taken fromKeane (2001).

The ecosystem process strategy represents suc-
cessional development by simulating one or more
ecosystem processes using a variety of approaches
mostly at the stand scale. An ecosystem process can
be as simple as deterministically incrementing stand
age (Boychuk et al., 1997) or as complex as com-
puting photosynthesis and evapotranspiration using
biogeochemical simulations (Lenihan et al., 1998).
These processes can be simulated stochastically using
probability distributions; modeled empirically using
regression equations derived from field data; or com-
puted using biophysical relationships parameterized
empirically. Examples of complex ecosystem process
LFSMs are the physical models BGC (Thornton et al.,
2002) and CENTURY (Peng and Apps, 1999). Cary
(1998)simulates succession more simply using only
fuel accumulation in FIRESCAPE.

Plant functional type strategies are used when dif-
ferences in species or species group development over
time is critical in simulating succession. Plant func-
tional types are species guilds based on morphological,
ecophysiological, taxonomic, or disturbance-response
criteria for a specific purpose (Diaz and Cabido,
1997; Bradstock et al., 1998). Vital attributes are
often used to create plant functional types in some
models (Noble and Slatyer, 1977). Plant functional

type succession models have an implicit species-level
scale, but mostly are stand models. Examples include
the empirical vital attributes models VASL (Noble
and Gitay, 1996), CAFÉ (Bradstock et al., 1998) and
LANDSIM (Roberts and Betz, 1999).

The most detailed succession components are those
that simulate successional development from individ-
ual plant dynamics (individual plant). These mod-
els explicitly simulate the life cycle (regeneration,
growth, reproduction, and mortality) of individual
plants within a homogeneous simulation area. An in-
dividual plant succession strategy usually allows other
important ecosystem characteristics that influence fire
and climate, such as fuels (i.e., biomass accumulation
and decomposition), available moisture (i.e., evap-
otranspiration, interception), and nutrient cycling.
The most common class of individual plant succes-
sion models are gap-phase models built primarily
to simulate stand development from individual trees
or diameter cohorts based on canopy gap dynamics
(Shugart and West, 1980, Botkin, 1993). LFSMs using
gap-phase simulation strategies include ZELIG-SP
(Miller and Urban, 1999), DRYADES (Mailly et al.,
2000), and Fire-BGC (Keane et al., 1996b). Another
class of succession models includes those individual
tree empirical models developed for forestry growth
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and yield predictions, such as FFE-FVS (Reinhardt
and Crookston, 2003). Most individual plant succes-
sion modules were developed for forested ecosystems
(Table 1), but there a few have been implemented
for grasslands and shrublands (Coffin and Lauenroth,
1990). And, some gap models simulate physical eco-
physiological processes, such as photosynthesis, to
model tree dynamics (Bonan and Korzuhin, 1989,
Leemans and Prentice, 1989).

2.2. The fire ignition component

The ignition component of LFSMs simulates the
initiation of a fire event defined as a fire start that
consumes some at least one cell or pixel on the simu-
lation landscape. Fire spread is initiated once the fire
ignition is simulated. There may or may not be a spot-
ting mechanism (i.e., the starting of a new fire from
firebrands produced by the fire in question), but in this
classification, spotting is considered part of the spread
process of the original fire and not a new fire event.
Fire ignition has a spatial and temporal element be-
cause the time and location of a fire start must be simu-
lated, and this simulation is dependent on many vege-
tation, environmental, and climatic characteristics that
interact across multiple time and space scales. For ex-
ample, fire ignition from lightning strikes is dependent
on thunderstorm tracking, topographic complexity,
presence and absence of lightning attractors (i.e., live
and dead trees), and fuel moisture at the strike location.
This inherent complexity is extremely difficult to sim-
ulate and has caused most modelers to take a stochastic
strategy. However, we have also identified a physical
approach where ignition is simulated using explicit
representation of the dependent physical processes
across relevant time and space scales. Both strategies
(stochastic and mechanistic) can be developed using
probabilistic, empirical, and physical approaches.

The stochastic strategy simulates ignition randomly
or from probability functions of fire starts using
vegetation characteristics, climatic indicators, and/or
topographical settings as independent variables. The
most common stochastic fire ignition component uses
an empirical approach where probability distribution
functions (e.g., Weibull, Pareto) are parameterized
from fire history, atlas, or occurrence data, and most
use stand age as the independent variable (Johnson
and Gutsell, 1994; Gutsell and Johnson, 1996). Some

LFSMs using this strategy include SEM-LAND (Li,
2000), SELES fire implementation (Fall and Fall,
1996), and SAFE-FORESTS (Sessions et al., 1999).

The mechanistic strategy simulates ignition by sim-
ulating the important biophysical processes that gov-
ern fire starts such as lightning dynamics, fuel moisture
and accumulation. This complex approach represents
a significant challenge to the modeler and has yet to be
fully integrated into an LFSM. An empirical approach
to the mechanistic strategy utilizes complex statistical
relationships to represent the influence of biophysi-
cal variables on fire initiation, such as weather, topog-
raphy, fuel moisture, and vegetation characteristics.
The physical approach attempts to explicitly simulate
the physical processes that govern fire initiation using
driving variables including weather, fuel moisture, and
lightning events. This is an extremely difficult chal-
lenge that is filled with scale, data, and knowledge
limitations. We know of no LFSM that simulates fire
ignition using this approach.

2.3. The fire spread component

The spread component simulates the growth of fire
across a landscape. It is important because it is re-
sponsible for the footprint of fire on the landscape and
provides direct spatial linkage to the postfire vegeta-
tion dynamics, which in turn feeds back to the fire ig-
nition and spread components. Several strategies have
been used to simulate the growth of fire, but none ap-
pear to be superior in all aspects (seeAndrews, 1989).
Accurate fire spread algorithms are often so complex
that they require prohibitively large computer and in-
put data resources for century-long, regional simula-
tions. In contrast, the simplest approaches can produce
unrealistic fire perimeters and inconsistent fire effects.
We identified three major strategies for simulating fire
spread: (1) shape, (2) lattice, and (3) vector strategies.

The shape strategy simulates the growth of fire by a
“cookie cutter” approach where all lands within a pre-
determined fire perimeter (often a truncated ellipse of
varied size) are burned. Wind, slope, and vegetation
can influence fire size and shapes but these are usu-
ally model inputs. The SIERRA model would fall into
this class (Mouillot et al., 2001). Fires are never really
“spread” across the landscape, but rather fire pattern
is predetermined without the incorporation of spatial
relationships. The size and shape of the pattern can be
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computed from stochastic functions (probabilistic ap-
proach) or statistical and mechanistic fire spread mod-
els (McArthur, 1967, Rothermel, 1972) (empirical and
physical approach).

Lattice models simulate the spread of fire from one
pixel to another in a raster spatial domain (Ball and
Guertin, 1992). Cell automata and bond percolation
spread models are contained within this strategy. Fire
spread in lattice models can be simulated as a stochas-
tic event based on probability distributions, empirical
relationships based on cell characteristics, or physi-
cal equations based on fuel conditions (Gardner et al.,
1999). Lattice spread models commonly included in
LFSMs may have a scale problem that consistently
creeps into raster spread simulations (Andrews, 1989).
Fire spreads at different rates along the perimeter; the
heading fire (flaming front at the head or downwind
side of the fire) generally moves the fastest while the
backing fire (flaming front at the rear or upwind fire
boundary) is generally the slowest (Finney, 1998). As
a result, cell-to-cell spread simulations tend to over-
simplify the fire growth process.

The vector strategy simulates the spread of fire
as a continuously expanding fire polygon (Anderson
et al., 1982). This polygon is defined by a series
of two-dimensional vertices that increase in number
as the fire grows over time (Finney, 1998). Vector
models often get model inputs from raster layers, but
the actual spread of the fire is simulated using vec-
tors. Probabilistic strategies use stochastic functions
to compute the rate and direction of fire spread and
may integrate environmental variables to determine
cell-to-cell spread. Empirical approach use regression
functions to drive the spread of fire in directional
vectors, while the physical approach uses algorithms
that simulate the physical processes that drive fire
growth (Albini, 1976). An example of a physical vec-
tor model is FARSITE fire growth model constructed
by Finney (1998)and implemented into the Fire-BGC
model (Keane et al., 1996b).

2.4. The fire effects component

An important LFSM component is fire effects, yet
it is often simulated in the least detail (Keane and
Finney, 2003; Reinhardt et al., 2001). Fire effects are
the direct and indirect consequences of the fire and do
not always relate to the intensity of the fire. Examples

include plant mortality, fuel consumption, smoke, and
soil heating (Reinhardt and Keane, 1998). Fire effects
simulations in most LFSMs are rule-based, dependent
on only whether the cell or stand burned. Rarely do
these simulations incorporate fire behavior into the
calculation of a fire effect. Selection of the effects to
model depends on the objective of the simulation and
the detail of other simulation components. For exam-
ple, it makes little sense to simulate fuel consump-
tion in a frame model because fuels are not explicitly
simulated, and consumption does not affect pathway
development and transition. We have identified two
major strategies for fire effects component develop-
ment: (1) rule-based and (2) mechanistic.

Rule-based fire effects components use general
statements to dictate the fate of a stand or landscape
after a fire. For example, if a red spruce stand burns,
then it transitions to a shrub stand. Most LFSMs with
frame succession components simulate the effects
of fire through the immediate transition to another
early seral community type. Examples of this include
SIMMPLE (Chew, 1997), LANDSUM (Keane et al.,
2002), and TELSA (Kurz et al., 2000). Sometimes
probability functions or parameters are used to sim-
ulate further detail. For example, the LANDSUM
model allows the user to specify several transition
communities based on their observed probability of
occurrence in the field (Keane et al., 1996a). Some
individual plant gap models assume all trees die if a
fire burns the stand (seeKeane et al., 2001for re-
view), and other models set the stand age to zero if a
fire burns a cell (Li, 2001). These rules can be param-
eterized using empirical field data, expert opinion, or
simulation results from other non-LFSM models.

Mechanistic fire effects simulation strategies at-
tempt to simulate a fire effects process using proba-
bilistic, empirical, or physical relationships. The First
Order Fire Effects Model (Reinhardt et al., 1997)
uses empirically derived logistic regression proba-
bility functions to model fire-caused tree mortality,
and these equations were implemented in Fire-BGC
(Keane et al., 1996b). There are many point-based
fire effects models that can easily be implemented in
LFSMs, including theHungerford et al. (1997)phys-
ically based soil heating model to simulate soil biota
and nutrient dynamics and theAlbini and Reinhardt
(1995) BURNUP model to simulate consumption of
woody fuels from physical relationships.
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3. Methods

3.1. Initial classification

In our initial LFSM classification, we attempted to
classify models along gradients of inherent design de-
tail represented by model approach and strategy (as
presented above) for each simulation component using
the MDE database (Rupp et al., 2001) (Fig. 2a). We de-
fined the “classification space” by assigning each sim-
ulation component a dimension and organized the LF-
SMs along a gradient of increasing complexity based
on information derived from modelers in our working
group and the MDE database. Complexity was defined
as the inherent detail embedded in the design of a com-
ponent and it was calculated from the number of vari-
ables, equations, algorithms, or lines of computer code
used to represent the component. It was assumed that
the approach and strategy adopted for each compo-
nent could be used to determine its position along the
complexity gradient. Similar models could be grouped
together based on this arrangement (Fig. 2b).

This proved a useful arrangement for descriptive
purposes but somewhat limited for classification for
several reasons. First, it was difficult to determine the
position of a model along the gradients of approaches
for each component. Existing LFSMs consistently had

(b)(a)

Fig. 2. (a) Initial classification space for grouping similar models using gradients of complexity by the four major components of LFSMs:
the succession element, the fire ignition element, fire spread element, and fire effects element (not shown here). (b) An example of the
initial mapping of landscape fire succession models in the complexity space using fire spread and succession components. Complexity is
increasing as one moves away from the origin and is based on model design.

a fusion of simulation approaches and strategies for
modeling each component. For example,Keane et al.
(1996b)’s Fire-BGC model simulated succession us-
ing complex biogeochemical simulation (growth), em-
pirical mortality equations, and stochastic functions
(regeneration). Moreover, approaches and strategies
do not consistently represent design detail or complex-
ity across all evaluated models. Some probabilistic
approaches were quite complex but they were con-
sistently classified at the lower end of the complexity
gradient. Moreover, the complexity of one simulation
component could influence the development of other
components. For example, a detailed simulation of
vegetation development, complete with climate, fuel
dynamics, and individual tree growth, would allow
for a more complex fire spread and effects simulation
because of the availability of comprehensive input
variables, such as fuels and weather. Last, it was dif-
ficult for modelers to choose the most appropriate ap-
proach from our list for each model component; most
modelers tended to describe their models quite differ-
ently than we did. Modelers were heavily influenced
by the amount of time they spend on development of
individual model components. Previous attempts at
classifying models by approaches and strategy have
been limited because of diversity in simulation de-
sign caused by the integration of many approaches
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to develop model components (Schimel et al., 1997;
Gardner et al., 1999; Barrett, 2001; Weise et al., 2003).

Since we could rarely categorized LFSM compo-
nents into discrete classification categories by simu-
lation design with sufficient accuracy or consistency,
we decided to use this initial effort as a qualitative
framework for describing the models and modifying
the structure of the MDE database rather than as a
classification to categorize models and components.
However, we were still left with the problem of how to
classify simulation models for comparison and evalu-
ation projects and for development of coarse scale fire
and vegetation models.

3.2. Final classification

We eventually abandoned the idea that models could
be classified by approach or strategy and decided
to use a more general description of the simulation
of individual components. After much debate at the
workshops, the classification space for each compo-
nent (succession, fire ignition, fire spread, fire effects)
was described in three dimensions by the gradients of
stochasticity, complexity, and mechanism inherent in
the simulation component. This resulted in 12 evalua-
tion elements (4 components by 3 gradients) for each
model. Together, these elements represent a formal
description of the model that can be objectively com-
pared to other models. There is some unavoidable
ambiguity in these gradients; however, we feel they
provide a standardized, comprehensive, and some-
what objective context in which to evaluate LFSMs.
Gradients can be modified, removed, or added if this
process is used to compare other types of models.

Stochasticity is defined as the amount of random-
ness inherent in the component design, or the degree
at which probabilistic functions influence the simu-
lation of that component. For example, component
simulations with low stochasticity have deterministic
functions that may or may not be based on physi-
cal relationships. Component simulations with high
stochasticity treat the forcing functions as proba-
bilistic relationships where the detail of the function
relates to the degree of randomness; models with
the highest stochasticity treat the simulation of that
component as a completely random process. Stochas-
ticity can be indirectly evaluated by the degree of
variability across simulation runs; high variability in

a simulated output when simulation parameters are
constant would indicate high stochasticity.

Complexity is defined as the inherent detail incor-
porated into the design of a simulated component.
Models with low complexity have modest sophistica-
tion in simulation detail. For example, a component
that is represented as an input by the user (e.g., fire
start locations are inputs to the model) would have
the lowest complexity. High complexity models have
components that are simulated by multiple equations
with multiple variables calculated over multiple time
spans (e.g., vector-based fire spread in the FARSITE
spread component;Finney, 1998). Complexity was de-
termined by the number of variables, equations, algo-
rithms, or lines of computer code needed to simulate
a component.

Mechanism is the degree to which fundamental
physical or chemical processes are represented in the
simulation of a LFSM component. Components with
low mechanism would use equations or algorithms
that do not represent causal biophysical process such
as photosynthesis, evapotranspiration, or decomposi-
tion. Examples would include those models that use
statistically derived equations (i.e., regression mod-
els) to simulate a component (e.g., growth and yield
individual plant models, FVS-FFE (Beukema et al.,
1997, Reinhardt and Crookston, 2003). High mech-
anism would be indicated by the complete represen-
tation of a component by physically based variables.
An example here would be the succession compo-
nent of the BIOME-BGC model that uses physically
based biogeochemical algorithms to simulate biomass
development (Thornton et al., 2002).

We conducted a census of existing LFSMs from
workshop participants, a review of the literature, and
correspondence with modelers. Only models that were
published in some form were considered, and this
yielded a list of 44 LFSMs that were used to build this
classification effort (seeTable 1).

We contacted the developers of these models and
asked them to rate the simulation of the four compo-
nents (succession, fire ignition, fire spread, and fire ef-
fects) by the three evaluation gradients (stochasticity,
complexity, and mechanism) using a scale from zero
to 10 (zero meant that it is not modeled or applicable
and 10 represented the highest level of stochasticity,
mechanism, or complexity). A detailed description of
rating criteria complete with examples was also given
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to each modeler. Some modelers did not reply, so we
assigned our own ratings based on a thorough review
of publications on the model. The values assigned to
each evaluation element were compiled into a database
(available from the authors) and then analyzed to iden-
tify groups of similar models. To ensure consistency
across modeler evaluations of their own models, we
created another database with our own assignments of
evaluation elements based on published literature and
our knowledge of the model.

To identify natural clusters or groups, the eval-
uation element data were ordinated using principal
components analysis (PCA) and clustered using
TWINSPAN techniques in the PC-ORD package
(McCune and Mefford, 1999). PCA is an eigenanal-
ysis technique that maximizes the variance explained
by each successive axis. TWINSPAN is a two-way
indicator species analysis producing a two-way table
(models by evaluation element) using an agglomer-
ative clustering technique (Gauch, 1982). The See5
statistical software (Quinlan, 2003) was also used
to cluster the evaluation element data using Ward’s
minimum variance hierarchical clustering, which is a
divisive clustering technique.

It was evident that the ordination and clustering re-
sults alone would not be sufficient for developing the
classification because of the high variance in evalua-
tion elements across models. Therefore, we revised the
MDE database so that keywords were used to describe
various explanatory categories such as approach, strat-
egy, scale and other descriptive attributes by LFSM
component (seeTable 2for database structure). These
categories and the discrete set of keywords for each
category were assigned by modelers at the various
workshops and by our review of model publications.
We then compared the frequency of keywords for each
category inTable 2across all LFSMs to qualitatively
identify similar characteristics.

A general LFSM classification was developed from
the fusion of the ordination, clustering, and keyword
comparison results. A dichotomous key for the classi-
fication was then constructed from the MDE database
and another See5 analysis. We used See5’s classifica-
tion tree analysis to identify key criteria for classifica-
tion categories and as an assessment of the accuracy
of our classification. Each LFSM was then keyed to
the appropriate classification categories and See5 was
used to determine thresholds in evaluation elements

that would uniquely identify classified LFSMs. We
then related common keywords to the dichotomous
key to name and identify important branches in the
dichotomy.

4. Results

Overall, results from the PCA ordination analysis
using the ratings supplied by the modelers show a
common arrangement of the 44 LFSMs (Fig. 3). The
first PCA ordination axis was related to complexity
and mechanism gradients for the succession compo-
nent (eigenvectors of –0.56 and−0.46), while the
second axis was mostly related to complexity and
mechanism gradients for fire spread (eigenvector of
−0.62 and –0.55). The third axis appears to be related
to fire ignition (eigenvector of−0.74). These three
axes explain about 66 percent of the variability across
the 12 evaluation elements.

The clustering analysis yielded slightly different
results. TWINSPAN results showed LFSMs were
grouped first on high values for succession and fire
effect components for mechanism and complexity
gradients (i.e., gap models) and second on fire effects
mechanism and complexity gradients (Fig. 4). There
appear to be two main groups among the models,
represented by models from 6 to 38 on the left of
Fig. 4 (denoted by a zero—0 in the uppermost line
of the TWINSPAN binary model groupings), and
models from 12 to 44 on the right (denoted by a 1 in
the model groupings). The leftmost group is charac-
terized by high stochasticity in fire ignition, spread,
and low complexity in succession. The group on the
right is characterized by high mechanism and com-
plexity in succession and low complexity in spread
and ignition. The See5 Ward’s variance technique
clustered models mostly on a mechanistic gradient for
succession (breakpoint at value of 4) and then along
a stochasticity gradient for the spread component el-
ement as further criteria. Both See5 and TWINSPAN
tended to cluster mainly on succession and fire spread
components.

Some results were consistent across ordination and
clustering analyses. Fire effects had the least influence
in the classification analysis with all fire effects ele-
ments. For example, PCA consistently rated the three
fire effect elements as 8th, 10th, and 12th out of 12 el-
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Fig. 3. Results of the principal components analysis (PCA) ordination of the landscape fire succession models (LFSMs) using the 12
evaluation elements that are combinations of complexity, stochasticity, and mechanism gradients by four model components (succession,
ignition, spread, effects). The first three axes explained roughly 66% of the variation (28, 18, and 145, respectively) and it took 10 axes
to explain over 99% of the variance.

ements for their importance in differentiating between
LFSMs. This is primarily because there was a low
diversity in fire effects simulation across models. In
contrast, succession and fire spread appeared to be the
two components that most heavily influenced the clus-
tering and ordination results because of the wide vari-
ety of simulation techniques represented. Succession
was more important in the clustering than ordination
probably because the three evaluation gradients (com-
plexity, stochasticity, and mechanism) were not closely
related in succession simulations. This same reason
may explain why all evaluation gradients appeared to
explain roughly the same amount of variance.

There was little difference in ordination or cluster-
ing results when the estimates of the 12 evaluation
elements were made by the authors rather than the
modelers (Fig. 5). This may indicate that the bias or
subjectivity in the rating of LFSMs by their develop-
ers was not a significant factor in this analysis. Values
of most evaluation elements were nearly the same
across the two sources, and those that were differ-

ent did not have a significant effect on the resultant
classification.

The final classification of LFSMs (Table 3) was de-
veloped from qualitatively integrating the ordination
and clustering results with information in the keyword
database and See5 classification tree analysis. It rep-
resents a qualitative grouping of similar models in the
three-dimensional space of complexity, stochasticity,
and mechanism (seeFig. 6for clusters in PCA ordina-
tion space). The first key to these classes, presented in
Table 4, was developed using the See5 results and an
evaluation of common keywords in the database (key-
words were also used to name the classes). The sec-
ond key inTable 4presents a synthesis of the results
from the classification tree analysis (See5) based on
evaluation element values. This key is only 75% accu-
rate because it only recognizes six of the 12 classes,
but it does provide insight into the evaluation elements
critical in identifying model classes where succession
complexity is the primary keying criteria (Table 4).
The development of the final LFSM classification was
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Fig. 4. Arrangement of models along the classification gradient in a two-way ordered table created from the TWINSPAN cluster analysis
results. The 12 evaluation elements are combinations of model component (succession-Succ, fire ignition-Ignt, fire spread-Sprd, and fire
effects-Efft) by complexity (Comp), stochasticity (Stoc), and mechanism (Mech). Values inside the matrix are the ratings assigned to each
model by the modeler who built the model. The TWINSPAN classes are identified by binary codes on the bottom for model groups and
on the right side for model component groups.

not necessarily based on a repeatable process. Instead,
it involved the distillation of patterns in ordination
space and classifications from a number of analyses
into broad groups of models based on similarities in
evaluation elements and keywords. Other authors may
come up with slightly different groupings of models.
However, we feel that our final classification repre-
sents a meaningful system for grouping models for
our specified objectives.

5. Discussion

5.1. The classification

This LFSM classification and supporting descrip-
tive material (Tables 3 and 4) can be used for many
purposes. It provides a common language for commu-
nication between managers, modelers, and research
scientists, and the classes can be used to quickly and
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Table 3
Final LFSM classification

Classification (category name) Label List of models Simple
keyword
agreement

Weighed
keyword
agreement

Coarse scale CB BIOME-BGC, CENTURY, GLOB-FIR,
REG-FIRM, MC-FIRE

74 68

Biogeochemical

Coarse scale CN ALFRESCO, FIREPAT 68 66
Any other model

Fine scale FTEF No models available NA NA
Individual tree or species

Empirical growth
Explicit fire growth

Fine scale FTEN FFE-FVS 100 100
Individual tree or species

Empirical growth
Indirect fire growth

Fine scale FTGF DRYADES, FIRE-BGC, SIERRA, LAMOS 53 48
Individual tree or species

Gap model
Explicit fire growth

Fine scale FTGN ZELIG-B, ZELIG-L 76 80
Individual tree or species

Gap model
Indirect fire growth

Fine scale FTDF FIN-LANDIS, LANDIS, QLAND 73 69
Individual tree or species

Diameter or age cohort
Explicit fire growth

Fine scale FTDN No models available NA NA
Individual tree or species

Diameter or age cohort
Indirect fire growth

Fine scale FFSF ANTON, CAF́E, EMBYR, INTELAND,
LANDSIM, LANDSUM, MAQUIS, MOSAIC,
Q-TIP, RMLANDS, SAFE-FOREST, SELES,
SIMPPLLE, TELSA

63 62

Frame models
Succession stages

Explicit fire growth

Fine scale FFSN BANKSIA, BFOLDS, FETM, VASL 58 58
Frame models

Succession stages
Indirect fire growth

Fine scale FFAF DISPATCH, FIRESCAPE, LADS, ON-FIRE,
RATZ, SELES, SEM-LAND

62 61

Frame models
Age-based

Explicit fire growth
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Table 3 (Continued)

Classification (category name) Label List of models Simple
keyword
agreement

Weighed
keyword
agreement

Fine scale
Frame models

Age-based
Indirect fire growth FFAN FLAP-X, SUFF1, SUFF2 85 84

Each category was given a name that best described the models in that group. Percent of keyword agreement for each category in the
MDE database was computed as the average frequency of keyword occurrence averaged across all categories inTable 2(simple) and then
weighted by number of keywords (weighed).

Fig. 5. PCA ordination results from ratings assigned by the authors of this paper. A comparison of these results with those produced when
ratings were done by the modelers (seeFig. 3) shows little difference.

efficiently characterize or describe a model relative to
others. The classification also provides a starting point
for managers to select the most appropriate model to
implement for their areas of interest, and for scien-
tists and other modelers to select the most appropriate
models to build or refine for their particular situa-
tions. The classification also provides the context to
evaluate or compare simulation approaches for each
component to build new models or refine old ones.

The LFSM classification presented here contains 12
classes of models based on evaluations of individual

models along gradients of complexity, stochasticity,
and mechanism. As such, this classification is only
useful if these gradients are important to selecting,
evaluating, or comparing models. The usefulness of
this classification for other purposes, such as exploring
climate change dynamics, remains unknown.

The three gradients used in this study were not per-
fectly orthogonal. Highly complex models tend to in-
clude many mechanistic functions that tend to have
a low degree of stochasticity (Gardner et al., 1999),
and they often were built specifically to remove the
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Fig. 6. Delineation of six model classes in ordination space for the developed classification using ratings assigned by the modelers. This
shows the relative position between classes and the similarity of models within a class.

stochasticity, so that these approaches could be mutu-
ally exclusive and the gradients correlated. However,
some highly complex systems, such as lightning dy-
namics, must be represented by stochastic functions
because of scale, computer, and knowledge limita-
tions. Statistical analyses of the three evaluation gra-
dients found correlation only between complexity and
mechanism (R2 = 0.71,P < 0.0132).

Some LFSMs used in this study may appear unre-
lated in scale and application, but they all meet the
criteria for an LFSM (spatially explicit simulation of
fire and vegetation) and were included in this study
to ensure that diverse models can be included in the
classification. A typical LFSM simulates the four
processes at a landscape scale. The biogeochemical
process models, REG-FIR (Venevsky et al., in press),
BIOME-BGC (Thornton et al., 2002), and CENTURY
(Peng and Apps, 1999) have simplistic simulations
of fire (i.e., no spread) implemented at a coarse scale
(1 km pixel), but they still satisfy LFSM criteria.
GLOB-FIR (Thonicke et al., 2001) and MC-FIRE
(Lenihan et al., 1998) are implemented into DGVMs

for global simulations at very coarse spatial scales and
do not simulate fire growth. The QLAND (Pennanen
et al., 2001) and INTELAND (Gauthier et al., 1994)
models are currently under construction and not avail-
able. The models QTIP (Plant et al., 1999), LAMOS
(Lavorel et al., 2000), and SELES (Fall and Fall, 2001)
are actually simulation platforms but the authors cre-
ated an LFSM as an application and demonstration of
their simulation system. The ZELIG-L model (Miller
and Urban, 1999) simulates fire patterns at fine
space scales but does not have an explicit landscape
implementation.

An estimate of accuracy was an obvious and con-
scious omission from the classification evaluation
criteria. A gradient of accuracy along with complex-
ity and stochasticity would have only complicated
the classification and would not have added any
pertinent information for several reasons. First, it
is extremely difficult to assess simulation accuracy
for most spatial models. Historical data of sufficient
spatial and temporal extent are rare, low quality,
and often not compatible with the input required of
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Table 4
Key for classifying LFSMs using gradients of complexity, stochasticity, and mechanism into categories defined inTable 3

LFSM classification keys

Results using the classification tree analysis
Succession complexity > 5

Spread stochasticity > 3 Class FTDF
Spread stochasticity≤ 3

Ignition stochasticity≤ 7 Class CB
Ignition stochasticity > 7 Class FTGF

Succession complexity≤ 5
Ignition stochasticity≤ 1 Class FFAN
Ignition stochasticity > 1

Ignition mechanism≤ 2 Class FFSF
Ignition mechanism > 2

Succession mechanism≤ 2 Class FFAF
Succession mechanism > 2 Class FFSF

Results using the MDE keyword database
Spatial resolution greater than 500 m pixel size

Biogeochemical succession driver Class CB
Any other model Class CN

Spatial resolution less than 500 m pixel size
Individual tree or species succession driver

Empirical growth and yield design
Explicit fire growth simulation Class FTEF
Indirect fire growth simulation Class FTEN

Gap-phase succession model
Explicit fire growth simulation Class FTGF
Indirect fire growth simulation Class FTGN

Diameter or age cohort succession driver
Explicit fire growth simulation Class FTDF
Indirect fire growth simulation Class FTDN

Frame-based succession driver
Species-based succession stages explicitly recognized

Explicit fire growth simulation Class FFSF
Indirect fire growth simulation Class FFSN

Age-based succession driver
Explicit fire growth simulation Class FFAF
Indirect fire growth simulation Class FFAN

Keys are designed to stop at the first level that fits. Explicit fire growth simulations include all vector and lattice fire growth approaches.

many models (Keane and Finney, 2003). It would
also be difficult to evaluate accuracy for individual
LFSM components, especially if they were highly
integrated as in FIRESCAPE and Fire-BGC, be-
cause sources of the error are hard to trace from
simulation component to component. A model can
be inaccurate but still be very useful because the
relative differences between landscape simulations
may be sufficient for land management objec-
tives.

The names and labels of LFSM classes are primarily
based on the succession component even though fire

spread and ignition were important in the classification
analysis. Succession keywords were more common
across LFSMs in the MDE database than keywords
for ignition or spread. This may be because design
of the succession component often dictates the detail
of the three fire components; a complex succession
simulation yields many intermediate variables, such
as fuel loadings and tree densities that can be used
in the ignition, spread, and effects simulations. There
also tended to be more categories but fewer keywords
per category in the succession component than other
components.
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5.2. Model classification keys

Two classification keys were developed from the re-
sults of this study (Table 4). The first key provides a
means to classify models based on the three evaluation
gradients (complexity, stochasticity, and mechanism)
(Classification Tree Analysis). This key was developed

Table 5
Key for selecting the most appropriate LFSMs for fire management and research applications based on operational characteristics developed
from the MDE database

Model selection key

Management application
Limited computer resources, modeling expertise, and/or input data available

Fire pattern important
Support and documentation available TELSA
Not as above LANDSUM

Fire pattern NOT important
Support and documentation available FFE-FVS
Not as above SIMPPLLE, FETM

Abundant computer resources, modeling expertise, and/or input data available
Individual tree or species level processes important

Support and documentation available None
Not as above LANDIS, QLAND, FIN-LANDIS

Only stand level characteristics important
Support and documentation available LANDMINE, SELES
Not as above BFOLDS, CAF́E, DISPATCH, EMBYR,

INTELAND, LADS, LANDSIM, RMLANDS,
SAFE-FOREST, SEM-LAND

Research application
Explore climate, vegetation and fire dynamics

Coarse scale applications BFOLDS, BIOME-BGC, CENTURY, MC-FIRE,
GLOB-FIR

Landscape scale applications
Individual tree or species level processes important

Fire pattern important FIRE-BGC, LAMOS, SIERRA
Not as above DRYADES, ZELIG-L, ZELIG-B

Only stand level characteristics important
Fire pattern important MAQUIS, FIRESCAPE
Not as above REG-FIRM

Explore fire and vegetation dynamics
Coarse scale applications ALFRESCO, FIREPAT
Landscape scale applications

Individual tree level processes important
Fire pattern important FIN-LANDIS, LANDIS
Not as above

Only stand level characteristics important
Fire pattern important ANTON, CAF́E, DISPATCH, EMBYR,

INTELAND, LANDSIM, MAQUIS, MOSAIC,
QTIP, RATZ, RMLANDS, SELES, SEM-LAND,
SUFF2

Not as above BANKSIA, FLAP-X, ON-FIRE, SUFF1, SUFF2,
VASL

This key is designed to stop at the first level that fits within a level.

from the regression tree analysis on the 12 evaluation
elements so it provides insight into the threshold val-
ues in evaluation ratings that are important for the de-
lineation of each class. The second key integrates the
ordination and clustering results with MDE database
and keyword database to uniquely identify the class or
category of any LFSM with a descriptive name taken
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from the MDE database. This key can be used to cat-
egorize other LFSMs not included in this study. The
key is best used when one is interested in how LFSMs
are similar with respect to complexity, stochasticity,
and mechanism, but it is not particularly useful when
other specific objectives are desired.

Managers have a pressing need to select the LFSM
that best suits their needs, and these needs may be
quite different from those of a researcher or modeler.
We used the results of this study, and our knowledge
of management issues, to construct a third key that
would allow the manager to select the most appro-
priate model (Table 5). This key is based mainly on
information in MDE and keyword databases and sec-
ondarily on the ordination and clustering results. It
uses mostly descriptive characteristics, such as ap-
plication, availability, and support, as primary key
criteria. Inclusion of this key also illustrates how
classification objective can dictate the design and
influence subsequent groupings. It is recommended
that models developed for the target ecosystem or
geographical area should be selected first.

5.3. Implications for coarse scale fire modeling

The simulation of fire spread in LFSMs presents
a paradox in scale. Results from most LFSMs sim-
ulations are summarized over thousands of years
across large regions, so the accuracy of daily fire
growth seems less important than the accuracy of
fire pattern and the fire effects within that pattern.
While detailed fire spread algorithms tend to ensure
accurate fire perimeters, it comes at a great computer
processing cost and may not be feasible or warranted
for millennial scale simulations (Keane and Finney,
2003). A common compromise is the simulation of
fire perimeter from predetermined shapes (Keane and
Long, 1997) or the forcing of fire spread along poly-
gon boundaries (Chew, 1997). However, accurate fire
perimeters depend on many factors such as weather,
topography, wind, and landform so generalized ap-
proaches might oversimplify fire growth processes,
especially when exploring climatic effects on fire dy-
namics. Detail in the fire growth algorithm must match
the complexity of the factors that control fire spread
for the landscape for the specific modeling objective.

It appears that the explicit simulation of fire spread
may not be needed in coarse scale dynamic global

vegetation models. Realistic fire regimes have been
generated by nearly all LFSMs, even though there
were diverse approaches used in fire growth simula-
tion. And, the annual area burned seemed to describe
fire regime better than the pattern created by simulated
fires as simulation time spans became long (Keane
et al., 2002). The combination of the number of ig-
nitions, annual area burned, and fire size appear to
be most important for simulations of large areas over
long time spans (Lenihan et al., 1998; Fosberg et al.,
1999). Therefore, a mechanistic representation of fire
ignitions and fire size distributions with climate, vege-
tation, human activity, and topography drivers should
be sufficient for coarse scale fire modeling. Fire effects
simulations can be improved by including fire severity
and intensity distributions to the appropriate drivers.

6. Conclusions

Classifying landscape models is very much like
classifying plant communities; the gradients of inher-
ent complexity and diversity within the population
nearly always preclude a perfect classification. Clas-
sification design is nearly always governed by its in-
tended application, so there will never be the ideal
LFSM classification for all purposes. In our case, we
developed the classification to select a set of LFSMs
that represent the diversity in the entire population to
perform a comprehensive model comparison designed
to identify critical vegetation, fire and climate pro-
cesses to include in coarse scale dynamic vegetation
models (Cary et al., in press). It is our hope that this
classification can be used for a myriad of other pur-
poses and that the techniques used to classify LFSMs
can be used for other simulation models and computer
applications.

Acknowledgements

This work was partially conducted as part of the
Landscape Fires working group supported by the Na-
tional Center for Ecological Analysis and Synthesis
(NCEAS), a Center funded by the National Science
Foundation (Grant #DEB-0072909), the University
of California, and the Santa Barbara campus. We
also thank all participants in the four NCEAS work-



R.E. Keane et al. / Ecological Modelling 179 (2004) 3–27 23

shops especially Andrew Fall, Florent Mouillot, Carol
Miller, Don McKenzie, Mike Wotton. We also thank
Russ Parsons, USDA Forest Service Fire Sciences
Laboratory for technical assistance and technical re-
view. This work was also partially funded by a grant
(NS-7327) from NASA’s Earth Science Applications
Division as part of the Food and Fiber Applications
of Remote Sensing (FFARS) program managed by
the John C. Stennis Space Center.

References

Acevedo, M.F., 1981. On Horn’s Markovian model of forest
dynamics with particular reference to tropical forests. Theor.
Popul. Biol. 19, 230–250.

Agee, J.K., 1993. Fire Ecology of Pacific Northwest Forests. Island
Press, Washington DC USA.

Albini, F.A., 1976. Estimating Wildfire Behavior and Effects.
General Technical Report INT-30, USDA Forest Service.

Albini, F.A., Reinhardt, E.D., 1995. Modeling ignition and burning
rate of large woody natural fuels. Int. J. Wildl. Fire 5, 81–91.

Anderson, D.G., Catchpole, E.A., DeMestre, N.J., Parkes, E., 1982.
Modeling the spread of grass fires. J. Aust. Math. Soc. 23,
451–466.

Andrews, P.L, 1989. Application of fire growth simulation models
in fire management. In: Maciver, D.C., Auld, H., Whitewood
(Eds.), Proceedings of the 10th Conference on Fire and Forest
Meteorology, Ottawa, Canada, pp. 317–321.

Antonovski, M.Y., Ter-Mikaelian, M.T., Furyaev, V.V., 1992.
A spatial model of long-term forest fire dynamics and its
applications to forests in western Siberia. In: Shugart, H.H.,
Leemans, R., Bonan, G.B. (Eds.), A Systems Analysis of the
Global Boreal Forest. Cambridge University Press, Cambridge,
UK, pp. 373–403.

Baker, W.L., 1989. A review of models of landscape change.
Landsc. Ecol. 2, 111–133.

Baker, W.L., 1992. The landscape ecology of large disturbances in
the design and management of nature reserves. Landsc. Ecol.
7, 181–194.

Baker, W.L., 1993. Spatially heterogeneous multi-scale response
of landscapes to fire suppression. Oikos 66, 66–71.

Baker, W.L., 1995. Longterm response of disturbance landscapes
to human intervention and global change. Landsc. Ecol. 10,
143–159.

Baker, W.L., 1999. Spatial simulation of the effects of human
and natural disturbance regimes on landscape structure. In:
Mladenoff, D.J., Baker, W.L. (Eds.), Spatial Modeling of Forest
Landscape Change: Approaches and Applications. Cambridge
University Press, Cambridge, UK, pp. 277–308.

Baker, W.L., Egbert, S.L., Frazier, G.F., 1991. A spatial model
for studying the effects of climatic change on the structure
of landscapes subject to large disturbances. Ecol. Model. 56,
109–125.

Ball, G.L., Guertin, D.P., 1992. Advances in fire spread simulation.
In: Proceedings on the Third Forest Service Remote Sensing
applications conference—Protecting Natural Resources with
Remote Sensing. American Society of Photogrammery and
Remote Sensing, 5410 Grosvenor Lane, Bethesda, Maryland
USA, Tucson, AZ, USA, pp. 241–249.

Barrett, T.M., 2001. Models of Vegetative Change for Landscape
Planning: A Comparison of FETM, LANDSUM, SIMPPLLE,
VDDT. General Technical Report RMRS-GTR-76-WWW,
USDA Forest Service, Rocky Mountain Research Station,
Ogden, UT, USA.

Beukema, S.J., Greenough, J.A., Robinson, D.C.E., Kurtz, W.A.,
Reinhardt, E.D., Crookston, N.L., Brown, J.K., Hardy, C.C.,
Stage, A.R., 1997. An introduction to the fire and fuels
extension to FVS. In: Teck, M.M.a.J.A.R. (Ed.), Proceedings
of Forest Vegetation Simulator Conference, United States
Department of Agriculture, Forest Service, Intermountain
Forest and Range Experiment Station, Ft. Collins, CO USA,
pp. 191–195.

Bonan, G.B., Korzuhin, M., 1989. Simulation of moss and tree
dynamics in the boreal forests of interior Alaska. Vegetatio 84,
31–44.

Botkin, D.B., 1993. Forest Dynamics: An Ecological Model.
Oxford University Press, New York, NY, USA.

Botkin, D.B., Schenk, H.J., 1996. Review and analysis of JABOWA
and related forest models and their use in climate change
studies. NCASI Technical Bulletin Number 717.

Boychuk, D., Perera, A.H., 1997. Modeling temporal variability
of boreal landscape age-classes under different fire disturbance
regimes and spatial scales. Can. J. Forest Res. 27, 1083–1094.

Boychuk, D., Perera, A.H., Ter-Mikaelian, M.T., Martell, D.L., Li,
C., 1997. Modelling the effect of spatial scale and correlated
fire disturbances on forest age distribution. Ecol. Model. 95,
145–164.

Bradstock, R.A., Bedward, M., Kenny, B.J., Scott, J., 1998.
Spatially-explicit simulation of the effect of prescribed burning
on fire regimes and plant extinctions in shrublands typical of
south-eastern Australia. Biological Conservation 86, 83–95.

Cary, G.J., 1997. FIRESCAPE—a model for simulation theoretical
long-term fire regimes in topographically complex landscapes.
In: Australian Bushfire Conference: Bushfire ’97, Australian
Bushfire Association, Darwin, AU, pp. 45–67.

Cary, G.J., 1998. Predicting fire regimes and their ecological
effects in spatially complex landscapes. Doctoral dissertation.
Australian National University, Canberra, AU.

Cary, G.J., Banks, J.C.G., 1999. Fire regime sensitivity to global
climate change: an Australia perspective. In: Innes, J.L.,
Beniston, M.M., Verstraete (Eds.), Advances in Global Change
Research: Biomass Burning and its Inter-Relationships with the
Climate System. Kluwer Academic Publishers, London, UK.

Cary, G.J., Keane, R.E., Gardner, R.H., Lavorel, S., Flannigan,
M.D., Davies, I.D., Li, C., Lenihan, J.M., Rupp, T.S.,
Mouillot, F., in press. Comparison of the sensitivity of
landscape-fire-succession models to variation in terrain, fuel
pattern and climate. Forest Ecol. Manage.

CH2MHill, 1998. Fire Emissions Tradeoff Model (FETM) version
3.3 user’s guide. Ch2M hill contract 53-82Ft-7-06 USDA Forest



24 R.E. Keane et al. / Ecological Modelling 179 (2004) 3–27

Service Pacific Northwest Region Final Report, Portland, OR,
USA.

Chew, J.D., 1997. Simulating vegetation patterns and processes
at landscape scales. In: Integrating Spatial Information
Technologies for Tomorrow: GIS ’97 Conference Proceedings,
17–20 February 1997, Fort Collins Colo: GIS World 1997,
pp. 287–290.

Chew, J.D., Stalling, C., Moeller, K., in press. Integrating
knowledge for simulating vegetation change at landscape scales.
Western J. Appl. Forest.

Clark, J.S., 1993. Fire, climate change. Special Paper 276, 295–
308.

Coffin, D.P., Lauenroth, W.K., 1990. A gap dynamic simulation
model of succession in a semiarid grassland. Ecol. Model. 14,
601–604.

Crutzen, P.J., Goldammer, J.G., 1993. Fire in the Environment: The
Ecological, Atmospheric and Climatic Importance of Vegetation
Fires. John Wiley and Sons, New York, NY, USA.

Cumming, S.G., Burton, P.J., Joy, M., Klinkenberg, B.,
Schmiegelow, F.K.A., Smith, J.N.M., 1995. Experimental
habitat fragmentation and simulation of landscape dynamics in
the boreal mixedwood: a pilot study. Project No. 5016, Forestry
Canada, Alberta Forest Service, Vancouver, B.C., USA.

Cumming, S.G., Burton, P.J., Prahacs, S., Garland, M.R., 1994.
Potential conflicts between timber supply and habitat protection
in the boreal mixedwood of Alberta, Canada: a simulation study.
Forest Ecol. Manage. 68, 281–302.

Dale, V.H., Rauscher, H.M., 1994. Assessing impacts of climate
change on forests: the state of biological modeling. Climat.
Change 28, 65–90.

DeBano, L.F., Neary, D.G., Ffolliott, P.F., 1998. Fire’s Effect on
Ecosystems. John Wiley and Sons, New York, USA.

Diaz, S., Cabido, M., 1997. Plant functional types and ecosystem
function in relation to global change. J. Vegetat. Sci. 8, 121–
133.

Fall, A., Fall, J., 2001. A domain-specific language for models of
landscape dynamics. Ecol. Model. 141, 1–18.

Fall, J., Fall, A., 1996. SELES: a spatially explicit landscape
event simulator. Pages (WWW and CD). In: Proceedings
of the NCGIA Third International Conference on GIS and
Environmental Modelling. GIS World, Santa Fe, NM.

Finney, M.A., 1998. FARSITE: Fire Area Simulator—Model
Development and Evaluation. Research Paper RMRS-RP-4,
United States Department of Agriculture, Forest Service Rocky
Mountain Research Station, Ft. Collins, CO USA.

Flannigan, M.D., Van Wagner, C.E., 1991. Climate change and
wildfire in Canada. Can. J. Forest Res. 21, 66–72.

Foley, J.A., Levis, S., Prentice, I.C., Pollard, D., Thompson, S.L.,
1998. Coupling dynamic models of climate and vegetation.
Global Change Biol. 4 (5), 561–586.

Fosberg, M.A., Cramer, W., Brovkin, V., Fleming, R., Gill,
A.M., Goldammer, J.G., Keane, R.E., Koehler, P., Lenihan, J.,
Neilson, R., Sitch, S., Thornicke, K., Venevski, S., Weber, M.G.,
Wittenberg, U., 1999. Strategy for a fire module in dynamic
global vegetation models. Int. J. Wildl. Fire 9, 79–84.

Gardner, R.H., Hargrove, W.W., Turner, M.G., Romme, W.H.,
1996. Climate change, disturbances and landscape dynamics.
In: Walker, B.H., Steffen, W.L. (Eds.), Global Change

and Terrestrial Ecosystems. Cambridge University Press,
Cambridge, MA, USA, pp. 149–172.

Gardner, R.H., Romme, W.H., Turner, M.G., 1999. Predicting
forest fire effects at landscape scales. In: Mladenoff, D.J.,
Baker, W.L. (Eds.), Spatial Modeling of Forest Landscape
Change: Approaches and Applications. Cambridge University
Press, Cambridge, United Kingdom, pp. 163–185.

Gauch, H.G., 1982. Multivariate Analysis in Community Ecology.
Cambridge University Press, New York, USA.

Gauthier, S., Flannigan, M.D., McAlpine, R.S., Wotton, B.M.,
Duchesne, L.C., Thompson, I.D., 1994. Boreal forest, fire
and climate: development of an integrated terrestrial landscape
model. In: Fire Management Under Fire (Adapting to Change):
Proceedings of the 1994 Interior West Fire Council Meeting
and Program. International Association of Wildland Fire, Coeur
d’Alene, ID, USA, pp. 217–226.

Green, D.G., 1989. Simulated effects of fire. Vegetatio 82, 139–
153.

Groeneveld, J., Enright, N.J., Lamont, B.B., Wissel, C., 2002.
A spatial model of coexistence among three Banksia species
along a topographic gradient in fire-prone shrublands. J. Ecol.
90, 744–762.

Gutsell, S.L., Johnson, E.A., 1996. How fire scars are formed:
coupling a disturbance process to its ecological effect. Can. J.
Forest Sci. 26, 166–174.

Hargrove, W.W., Gardner, R.H., Turner, M.G., Romme, W.H.,
Despain, D.G., 2000. Simulating fire patterns in heterogeneous
landscapes. Ecol. Model. 135, 243–263.

Hawkes, B.C., Flannigan, M.D. (Eds.), 2000. Landscape fire
modeling-challenges and opportunitites. Northern Forestry
Centre Information Report NOR-X-371, Canadian Forestry
Service, Victoria, British Columbia, 68 pages.

He, H.S., Mladenoff, D.J., 1999. Spatially explicit and stochastic
simulation of forest-landscape fire disturbance and succession.
Ecol. Soc. Am. 80, 81–99.

Hungerford, R., Frandsen, W.H., Ryan, K.C., 1997. Ignition and
burning characteristics of organic soils. Can. J. Forest. Res. 27,
1471–1472.

Hurtt, G.C., Moorcroft, P.R., Packala, S.W., Levin, S.A., 1998.
Terrestrial models and global change: challenges for the future.
Global Change Biol. 4 (5), 581–598.

Johnson, E.A., Gutsell, S.L., 1994. Fire frequency models, methods
and interpretations. Adv. Ecol. Res. 25, 239–287.

Keane, R.E., 2001. Successional dynamics: modeling an
anthropogenic threat. In: Tomback, D., Arno, S., Keane, R.
(Eds.), Whitebark Pine Communities: Ecology and Restoration.
Island Press, Washington DC, USA, pp. 159–192.

Keane, R.E., Finney, M.A., 2003. The simulation design for
modeling landscape fire, climate, ecosystem dynamics. In:
Swetnam, T.W., editor. Fire and Climatic Change in Temperate
Ecosystems of the Western Americas. Springer Verlag, New
York, USA, pp. 32–68.

Keane, R.E., Long, D.G., 1997. A comparison of coarse scale fire
effects simulation strategies. Northwest Sci. 72, 76–90.

Keane, R.E., Long, D., Basford, D., Levesque, B.A.,
1997. Simulating vegetation dynamics across multiple
scales to assess alternative management strategies. In:
Conference Proceedings—GIS 97, 11th Annual symposium



R.E. Keane et al. / Ecological Modelling 179 (2004) 3–27 25

on Geographic Information Systems—Integrating Spatial
Information Technologies for Tomorrow. GIS World, INC.,
Vancouver, British Columbia, Canada, pp. 310–315.

Keane, R.E., Long, D.G., Menakis, J.P., Hann, W.J., Bevins,
C.D., 1996a. Simulating coarse-scale vegetation dynamics using
the Columbia River Basin succession model : CRBSUM.
USDA Forest Service Intermountain Research Station General
Technical Report INT-340, Ogden, UT, 88 pages.

Keane, R.E., Morgan, P., Running, S.W., 1996b. FIRE-BGC—a
mechanistic ecological process model for simulating fire
succession on coniferous forest landscapes of the northern
Rocky Mountains. Research Paper INT-RP-484, United States
Department of Agriculture, Forest Service Intermountain Forest
and Range Experiment Station, Ogden, UT, USA.

Keane, R.E., Austin, M., Austin, M., Dalman, R., Field, C., Huth,
A., Lexer, M., Peters, D., Solomon, A., Wyckoff, P., 2001.
Tree mortality in gap models: application to climate change.
Climatic Change 51 (3/4), 509–540.

Keane, R.E., Parsons, R., Hessburg, P., 2002. Estimating historical
range and variation of landscape patch dynamics: limitations
of the simulation approach. Ecol. Model. 151, 29–49.

Keane, R.E., Parsons, R., Rollins, M.G., 2004. Predicting fire
regimes across multiple scales. In: Perera, A., B.L. (Eds.),
Emulating Natural Disturbances: Concepts and Techniques.
Cambridge University Press, Cambridge, UK, pp. 88–94.

Keane, R.E., Ryan, K.C., Running, S.W., 1995. Simulating the
effects of fire and climate change on northern Rocky Mountain
landscapes using the ecological process model FIRE-BCG. In:
Interior West Global Change Workshop, U.S. Department of
Agriculture Forest Service Rocky Mountain Forest and Range
Experiment Station, Fort Collins, CO, April 25–27, 1995,
pp. 39–47.

Keane, R.E., Arno, S.F., Brown, J.K., 1989. FIRESUM—an
ecological process model for fire succession in western conifer
forests. General Technical Report INT-266, USDA Forest
Service.

Klenner, W.E., Kurz, W.A., Beukema, S.J., 2000. Habitat
patterns in forested landscapes: management practices and
the uncertainty associated with natural disturbances. Comput.
Electron. Agric. 27, 243–262.

Kurz, W.A., Beukema, S.J., Klenner, W.E., Greenough, J.A.,
Robinson, D.C.E., Sharpe, A.D., Webb, T.M., 2000. TELSA:
the tool for exploratory landscape scenario analysis. Comput.
Electron. Agric. 27, 227–242.

Lavorel, S., Davies, I.D., Nobel, I.R., 2000. LAMOS: a
LAndscape MOdelling Shell. In: Hawkes, B., Flannigan, M.D.
(Eds.), Landscape Fire Modeling-Challenges and Opportunities.
Natural Resources Canada, Canadian Forest Service, Vancouver,
BC, Canada, pp. 25–28.

Leemans, R., Prentice, I., 1989. FORSKA, A General Forest
Succession Model. General Report 89/2, Institute of Ecological
Botany, Uppsala, Sweden.

Lenihan, J.M., Daly, C., Bachelet, D., Neilson, R.P., 1998.
Simulating broad scale fire severity in a dynamic global
vegetation model. Northwest Sci. 72, 91–103.

Li, C., 1997. ON-FIRE: a landscape model for simulating the fire
regime of northwest Ontario. Ecol. Res. Sustainable Dev. 4,
369–392.

Li, C., 2000. Reconstruction of natural fire regimes through
ecological modelling. Ecol. Model. 134, 129–144.

Li, C., 2001. Fire disturbance patterns and forest age structure.
Nat. Resour. Model. 14, 495–521.

Li, C., Ter-Mikaelian, M., Perera, A., 1997. Temporal fire
disturbance patterns on a forest landscape. Ecol. Model. 99,
137–150.

Mailly, D., Kimmins, J.P., Busing, R.T., 2000. Disturbance
and succession in a coniferous forest of northwestern North
America: simulation with DRYADES, a spatial gap model. Ecol.
Model. 127, 183–205.

McArthur, A.G., 1967. Fire Behavior in Eucalypt Forests. Leaflet
Number 107 Commonwealth of Australia Forestry and Timber
Bureau.

McCarthy, M.A., Cary, G.J., 2002. Fire regimes in landscapes:
models and realities. In: Bradstock, R., Williams, J., Gill, M.
(Eds.), Flammable Australia: the Fire Regimes and Biodiversity
of A Continent. Cambridge University Press, Cambridge, UK,
pp. 77–94.

McCarthy, M.A., Gill, A.M., 1997. Fire modeling and biodiversity.
In: Natural and Altered Landscapes: Disturbance Ecology of
Ecosystems. Elsevier Ltd., pp. 79–88.

McCune, B., Mefford, M.J., 1999. PC-ORD, Multivariate Analysis
of Ecological Data. Version 4. MjM Software Design, Gleneden
Beach, Oregon, USA.

McGarigal, K., Romme, W.H., Goodwin, D., Haugsjaa, E., 2003.
Simulating the dynamics in landscape structure and wildlife
habitat in Rocky Mountain landscapes: The Rocky Mountain
Landscape Simulator (RMLANDS) and associated models.
Final Report On File at DNRC, University of Massachusetts,
Box 34210, Amherst, MA 01003, Department of Natural
Resources Conservation, University of Massachusetts, Amherst,
MA.

Miller, C., 1994. A model of the interactions among climate,
fire, and forest pattern in the Sierra Nevada. Master’s thesis.
Colorado State University, Fort Collins, CO, USA.

Miller, C., Urban, D.L., 1999. A model of surface fire, climate,
and forest pattern in the Sierra Nevada, California. Ecol. Model.
114, 113–135.

Mladenoff, D.J., Baker, W.L., 1999. Spatial Modeling of Forest
Landscape Change. Cambridge University Press, Cambridge,
UK.

Mladenoff, D.J., He, H.S., 1999. Design, behavior and application
of LANDIS, an object-oriented model of forest landscape
disturbance and succession. In: Mladenoff, D.J., Baker,
W.L. (Eds.), Spatial Modeling of Forest Landscape Change:
Approaches and Applications. Cambridge University Press,
Cambridge, UK, pp. 125–162.

Mladenoff, D.J., Host, G.E., Boeder, J.R., Crow, T.R., 1996.
LANDIS: a spatial model of forest landscape disturbance
succession, and management. In: GIS and Environmental
Modeling: Progess and Research Issues. GIS World Books, Fort
Collins, CO, USA, pp. 175–179.

Mouillot, F., Rambal, S., Lavorel, S., 2001. A generic
process-based SImulator for mediteRRAnean landscApes
(SIERRA): design and valudation exercises. Forest Ecol.
Manage. 147, 75–97.



26 R.E. Keane et al. / Ecological Modelling 179 (2004) 3–27

Mouillot, F., Rambal, S., Joffre, R., 2002. Simulating climate
change impacts on fire frequency and vegetation dynamics in
a Mediterranean-type ecosystem. Global Change Biol. 8, 423–
437.

Neilson, R.P., Running, S.W., 1996. Global dynamic vegetation
modelling: coupling biogeochemistry and biogeography models.
In: Global Change and Terrestrial Ecosystems. Cambridge
University Press, New York, USA, pp. 451–465.

Noble, I.R., Gitay, H., 1996. A functional classification for
predicting the dynamics of landscapes. J. Vegetat. Sci. 7, 329–
336.

Noble, I.R., Slatyer, R.O., 1977. Post-fire succession of plants in
Mediterranean ecosystems. In: Symposium on Environmental
Consequences of Fire and Fuel Management in Mediterranean
Ecosystems, Palo Alto, CA, USA, pp. 27–36.

Peng, C., Apps, M.J., 1999. Modelling the response of net primary
productivity (NPP) of boreal forest ecosystems to changes in
climate and fire disturbance regimes. Ecol. Model. 122, 175–
193.

Pennanen, J.K., Greene, D.F., Fortin, M.-J., Messier C., 2001.
Development of QLAND, a spatial model of forest landscape
dynamics incorporating prediction of tree volume and seedling
recruitment. SFM this week 3/4.

Pennanen, J.K., Kuuluvainen, T., 2002. A spatial simulation
approach to natural forest landscape dynamics in boreal
Fennoscandia. Forest Ecol. Manage. 164, 157–175.

Perera, A.H., Yemshanov, D., Schnekenburger, F., Weaver,
K., Baldwin, D.J.B., Boychuk, D., 2002. Boreal FOrest
Landscape Dynamics Simulator (BFOLDS): a grid-based
spatially stochastic model for predicting crown fire regime and
forest cover transition. Forest Research Report No. 152, Ontario
Forest Research Institute, Sault Ste. Marie, Ontario, Canada.

Perry, G.L.W., Enright, N.J., 2002. Spatial modelling of landscape
composition and pattern in a maquis-forest complex, Mont Do,
New Caledonia. Ecol. Model. 152, 279–302.

Plant, R.E., Vayssieres, M.P., Greco, S.E., George, M.R., Adams,
T.E., 1999. A qualitative spatial model of hardwood rangeland
state-and-transition dynamics. J. Range Manage. 52, 51–59.

Prentice, I.C., Monserud, R.A., Smith, T.M., Emanuel, W.R., 1993.
Modeling large-scale vegetation dynamics. In: Solomon, A.M.,
Shugart, H.H. (Eds.), Vegetation Dynamics and Global Change.
Chapman & Hall, New York, USA, pp. 235–250.

Quinlan, J.R., 2003. Data Mining Tools See5 and C5.0.
RULEQUEST RESEARCH, St. Ives, NSW, Australia,
www.rulequest.com/see5-info.html.

Ratz, A., 1995. Long-term spatial patterns created by fire: a model
oriented towards boreal forests. Int. J. Wildl. Fire 5, 25–34.

Reinhardt, E., Crookston, N.L. (Eds.), 2003. The fire and fuels
extension to the Forest Vegetation Simulator. USDA Forest
Service General Technical Report RMRS-GTR-166, Rocky
Mountain Research Station, Fort Collins, CO, USA, 209 pages.

Reinhardt, E., Keane, R.E., 1998. FOFEM—a first order fire effects
model. Fire Manage. Notes 58, 25–28.

Reinhardt, E., Keane, R.E., Brown, J.K., 1997. First Order Fire
Effects Model: FOFEM 4.0 User’s Guide. USDA Forest Service
General Technical Report INT-GTR-344. Rocky Mountain
Research Station, 48 pages.

Reinhardt, E.D., Keane, R.E., Brown, J.K., 2001. Modeling fire
effects. Int. J. Wildl. Fire 10, 373–380.

Roberts, D.W., Betz, D.W., 1999. Simulating landscape vegetation
dynamics of Bryce Canyon National Park with the
vital attributes/fuzzy systems model VAFS.LANDSIM. In:
Mladenoff, D.J., Baker, W.L. (Eds.), Spatial Modeling of Forest
Landscape Change: Approaches and Applications. Cambridge
University Press, Cambridge, UK, pp. 99–123.

Rothermel, R.C., 1972. A mathematical model for predicting fire
spread in wildland fuels. Research Paper INT-115, United States
Department of Agriculture, Forest Service, Intermountain Forest
and Range Experiment Station, Ogden, Utah.

Running, S.W., Coughlan, J.C., 1988. A general model of forest
ecosystem processes for regional applications. I. Hydrologic
balance. Ecol. Model. 42, 125–154.

Running, S.W., Gower, S.T., 1991. FOREST-BGC, a general model
of forest ecosystem processes for regional applications. II.
Dynamic carbon allocation and nitrogen budgets. Tree Physiol.
9, 147–160.

Running, S.W., Nemani, R.R., 1991. Regional hydrologic and
carbon balance responses of forests resulting from potential
climate change. Climat. Change 19, 349–368.

Rupp, T.S., Chapin, F.S., Starfield, A.M., 2000a. Response of
subartic vegetation to transient climatic change on the Seward
Peninsula in north-west Alaska. Global Change Biol. 6, 541–
555.

Rupp, T.S., Keane, R.E., Lavorel, S., Flannigan, M.D., Cary, G.J.,
2001. Towards a classification of landscape fire succession
models. GCTE News 17, 1–4.

Rupp, T.S., Starfield, A.M., Chapin, F.S., 2000b. A frame-based
spatially explicit model of subartic vegetation response to
climatic change: comparison with a point model. Landsc. Ecol.
15, 383–400.

Ryan, K.C., 1991. Vegetation and wildland fire: implications of
global climate change. Environ. Int. 17, 169–178.

Schaaf, M.D., Carlton, D.W., 1998. The Fire Effects Tradeoff
Model. in The Role of Information Technology in Fire
Management. California Association for Fire Ecology, Bahia
Hotel, San Diego, California.

Schimel, D.S., Braswell, B.H., VEMAP Participants, 1997.
Continental scale variability in ecosystem processes: models,
data, and the role of disturbance. Ecol. Monogr. 67, 251–271.

Sessions, J., Johnson, N., Franklin, J.F., Gabriel, J.T., 1999.
Achieving sustainable forest structures on fire-prone landscapes
while pursuing multiple goals. In: Mladenoff, D.J., Baker,
W.L. (Eds.), Spatial Modeling of Forest Landscape Change:
Approaches and Applications. Cambridge University Press,
Cambridge, UK, pp. 210–253.

Sessions, J., Johnson, K.N., Sapsis, D.B., Bahro, B., Garbriel, J.,
1997. Methodology for simulating forest growth, fire effects,
timber harvest, and watershed disturbance under different
management regimes. In: Sierra Nevada Ecosystem Project
Final Report to Congress: Status of the Sierra Nevada. Centers
for Water and Wildland Resources, University of California at
Davis, Davis, CA USA, pp. 115–174.

Shugart Jr., H.H., West, D.C., 1980. Forest succession models.
Bioscience 30, 308–313.

http://www.rulequest.com/see5-info.html


R.E. Keane et al. / Ecological Modelling 179 (2004) 3–27 27

Solomon, A.M., 1986. Transient response of forests to
CO2-induced climate change: simulation modeling experiments
in eastern North America. Oecologia 68, 567–579.

Starfield, A.M., Chapin, F.S., 1996. Model of transient changes
in arctic and boreal vegetation in response to climate and land
use change. Ecol. Appl. 6, 842–864.

Suffling, R., 1993. Induction of vertical zones in sub-alpine valley
forests by avalanche-formed fuel breaks. Landsc. Ecol. 8, 127–
138.

Suffling, R., 1995. Can disturbance determine vegetation
distribution during climate warming? A boreal test. J. Biogeogr.
22, 501–508.

Swetnam, T.W., 1997. Mesoscale disturbance and ecological
response to decadal climatic variability in the American
Southwest. J. Climate 11, 3128–3147.

Swetnam, T.W., Baisan, C.H., 1996. Historical fire regime patterns
in the soutwestern United States since AD 1700. In: Allen,
C.D. (Ed.), Fire Effects in Southwestern Forests, Proceedings
of the 2nd La Mesa Fire Symposium. Rocky Mountain Forest
and Range Experiment Station, Forest Service, USDA, pp. 11–
32.

Thonicke, K., Venevski, S., Sitch, S., Cramer, W., 2001. The role
of fire disturbance for global vegetation dynamics: coupling
fire into a Dynamic Global Vegetation Model. Global Ecol.
Biogeogr. Lett. 10, 661–678.

Thornton, P.E., 1998. Regional ecosystem simulation:
COMBINING surface- and satellite-based observations to study

linkages between terrestrial energy and mass budgets. PhD
Dissertation. University of Montana, Missoula, MT, USA.

Thornton, P.E., Law, B.E., Gholz, H.L., Clark, K.L., Falge, E.,
Ellsworth, D.S., Goldstein, A.H., Monson, R.K., Hollinger,
D.Y., Falk, M., Chen, J., Sparks, J.P., 2002. Modeling and
measuring the effects of disturbance history and climate on
carbon and water budgets in evergreen needleleaf forests. Agric.
Forest Meteorol. 113, 185–222.

Venevsky, S., Thonicke, K., Sitch, S., Cramer, W., in press.
Simulating fire regimes in human-dominated ecosystems:
Iberian Peninsula case study. Global Change Biol.

Waring, R.H., Running, S.W., 1998. Forest Ecosystems: Analysis
at Multiple Scales, second edition. Academic Press, Inc., San
Diego, CA, USA.

Weber, M.G., Flannigan, M.D., 1997. Canadian boreal forest
ecosystem structure and function in a changing climate: impact
on fire regimes. Environ. Rev. 5, 145–156.

Weise, D.R., Kimberlin, R., Arbaugh, M., Chew, J.D., Jones,
G., Merzenich, J., Wiitala, M., Keane, R., Schaaf, M.D., Van
Wagtendonk, J.W., 2003. Comparing Potential Fuel Treatment
Trade-off Models.

Wimberly, M.C., 2002. Spatial simulation of historical landscape
patterns in coastal forests of the Pacific Northwest. Can. J.
Forest Res. 32, 1316–1328.

Wimberly, M.C., Spies, T.A., Long, C.J., Whitlock, C., 2000.
Simulating historical variability in the amount of old forest in
the Oregon Coast Range. Conserv. Biol. 14, 167–180.


	A classification of landscape fire succession models: spatial simulations of fire and vegetation dynamics
	Introduction
	Background
	The succession component
	The fire ignition component
	The fire spread component
	The fire effects component

	Methods
	Initial classification
	Final classification

	Results
	Discussion
	The classification
	Model classification keys
	Implications for coarse scale fire modeling

	Conclusions
	Acknowledgements
	References


